Produkt zum Begriff Deep:
-
Chabert, Antoine: SAP Analytics Cloud: Predictive Analytics
SAP Analytics Cloud: Predictive Analytics , Today's organizations must be prepared for tomorrow's events. Forecast future behavior in SAP Analytics Cloud with this comprehensive guide to predictive analytics! Start by learning about the data types, scenarios, and methods used in predictive analytics projects. Then follow step-by-step instructions to build, analyze, and apply predictive models to your business data using classification, time series forecasting, and regression analysis. Automate your models and dive into the data science with this all-in-one guide! In this book, you'll learn about: a. Predictive Scenarios and Projects Understand the basics of predictive analytics in SAP Analytics Cloud: scenarios, data types, and actions. Then plan your predictive project, including identifying the key stakeholders and reviewing the methodology. b. Build, Train, Analyze, and Apply Master predictive models from end to end. Create classification, time series, and regression models; then train them to identify business patterns. Analyze and apply the results of your models to data in SAP Analytics Cloud. c. Practical Demonstrations See predictive analytics in action! Identify use cases for predictive modeling. For each data model, understand practical applications through curated examples with sample business data. Highlights include: 1) Predictive scenarios 2) Predictive forecasts 3) Data modeling 4) Planning 5) Time series model 6) Classification model 7) Regression model 8) Multi-actions 9) Data science 10) Stories and dashboards , Schule & Ausbildung > Fachbücher, Lernen & Nachschlagen
Preis: 81.99 € | Versand*: 0 € -
Ekman, Magnus: Learning Deep Learning
Learning Deep Learning , NVIDIA's Full-Color Guide to Deep Learning: All StudentsNeed to Get Started and Get Results Learning Deep Learning is a complete guide to DL.Illuminating both the core concepts and the hands-on programming techniquesneeded to succeed, this book suits seasoned developers, data scientists,analysts, but also those with no prior machine learning or statisticsexperience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers,Magnus Ekman shows how to use them to build advanced architectures, includingthe Transformer. He describes how these concepts are used to build modernnetworks for computer vision and natural language processing (NLP), includingMask R-CNN, GPT, and BERT. And he explains how a natural language translatorand a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples usingTensorFlow with Keras. Corresponding PyTorch examples are provided online, andthe book thereby covers the two dominating Python libraries for DL used inindustry and academia. He concludes with an introduction to neural architecturesearch (NAS), exploring important ethical issues and providing resources forfurther learning. Exploreand master core concepts: perceptrons, gradient-based learning, sigmoidneurons, and back propagation See how DL frameworks make it easier to developmore complicated and useful neural networks Discover how convolutional neuralnetworks (CNNs) revolutionize image classification and analysis Apply recurrentneural networks (RNNs) and long short-term memory (LSTM) to text and othervariable-length sequences Master NLP with sequence-to-sequence networks and theTransformer architecture Build applications for natural language translation andimage captioning , >
Preis: 49.28 € | Versand*: 0 € -
Jankowski, Timo: Fußball - Von Big Data zu Smart Data
Fußball - Von Big Data zu Smart Data , Das Thema Big Data ist unaufhaltsam in die Fußballwelt eingezogen und wird mit Sicherheit auch nicht mehr verschwinden. Es wird weiterhin an Bedeutung gewinnen, da die Datenqualität und die praktische Umsetzung dieser Daten bereits zahlreiche beeindruckende Erfolge vorweisen können. Zu Beginn des Buchs wird auf die Problematik des Schwarz-Weiß-Denkens, das im Fußball weit verbreitet ist, eingegangen. Im zweiten Teil rückt dann das Thema Big Data im Fußball in den Vordergrund. Dies geschieht vor allem immer im Hinblick auf die Umwandlung in Smart Data mit vielen praktischen Beispielen, sodass jeder Trainer und Interessierte zahlreiche Anregungen für die eigene Arbeit in der Planung, auf dem Platz und in der Evaluierung bekommt. Zahlreiche Key-Performance-Indikatoren (KPIs) werden unter die Lupe genommen und es wird aufgezeigt, wie Datenanalyse auf dem Weg zum Erfolg helfen kann. Ziel dieses Werks ist es, das Thema Big Data im Fußball zu entmystifizieren, weshalb im letzten Abschnitt die erfolgreiche Qualifikation der Juniorennationalmannschaft von Fidschi für die U20-Weltmeisterschaft 2023 beschrieben wird. Dieses Beispiel zeigt, wie die richtige Mischung aus objektiven Daten und den menschlichen Komponenten in der Praxis zum Erfolg führen kann. Dieses Buch plädiert dafür, die tief verwurzelten Werte und die Ursprünglichkeit des Fußballs unbedingt beizubehalten und zeigt auf, wie sich beide Seiten - Bauchgefühl und Datenanalyse - gewinnbringend miteinander verbinden lassen. Fußball - von Big Data zu Smart Data ist DAS Standardwerk für alle Trainer, die das Thema Big Data angehen wollen und Tipps für die Umsetzung auf dem Platz benötigen. , Bücher > Bücher & Zeitschriften
Preis: 28.00 € | Versand*: 0 € -
APC StruxureWare Data Center Expert Virtual Machine
StruxureWare Data Center Expert Virtual Machine - Activation License
Preis: 2533.89 € | Versand*: 0.00 €
-
Wie funktioniert Big Data Analytics?
Wie funktioniert Big Data Analytics? Big Data Analytics beinhaltet die Verarbeitung und Analyse großer Mengen von Daten, um Muster, Trends und Erkenntnisse zu identifizieren. Zunächst werden die Daten gesammelt und gespeichert, dann werden sie mithilfe von speziellen Tools und Algorithmen analysiert. Durch den Einsatz von Data Mining, maschinellem Lernen und künstlicher Intelligenz können Unternehmen wertvolle Einblicke gewinnen und fundierte Entscheidungen treffen. Die Ergebnisse der Analyse können für verschiedene Anwendungen genutzt werden, wie z.B. zur Verbesserung von Produkten und Dienstleistungen, zur Optimierung von Geschäftsprozessen oder zur Vorhersage von zukünftigen Entwicklungen.
-
Warum Deep Learning im Vergleich zu Machine Learning?
Deep Learning unterscheidet sich von Machine Learning durch seine Fähigkeit, automatisch Merkmale aus den Daten zu extrahieren, anstatt dass diese manuell definiert werden müssen. Dadurch ist Deep Learning in der Lage, komplexere und abstraktere Muster in den Daten zu erkennen und zu lernen. Dies ermöglicht es Deep Learning-Modellen, in vielen Anwendungsbereichen, wie Bild- und Spracherkennung, bessere Leistungen zu erzielen als herkömmliche Machine Learning-Modelle.
-
Was ist der Unterschied zwischen Deep Learning und Machine Learning?
Deep Learning ist eine spezielle Methode des Machine Learning, die auf künstlichen neuronalen Netzwerken basiert. Es ermöglicht das Lernen von hierarchischen und komplexen Merkmalsdarstellungen, um automatisch Muster und Strukturen in Daten zu erkennen. Im Gegensatz dazu ist Machine Learning ein breiterer Begriff, der verschiedene Algorithmen und Techniken umfasst, um Computermodelle zu erstellen, die aus Daten lernen und Vorhersagen treffen können. Deep Learning ist also eine Teilmenge des Machine Learning.
-
Welche Förderungsmaßnahme gibt es für Data Analysts bzw. Data Scientists?
Es gibt verschiedene Förderungsmaßnahmen für Data Analysts und Data Scientists, je nach Land und Organisation. Zum Beispiel bieten Universitäten und Forschungseinrichtungen Stipendien und Forschungsprojekte an. Unternehmen können auch Weiterbildungsprogramme und Schulungen für ihre Mitarbeiter anbieten. Darüber hinaus gibt es auch staatliche Förderprogramme und Stipendien für Studierende und Forscher in diesem Bereich.
Ähnliche Suchbegriffe für Deep:
-
Bishop, Christopher M.: Deep Learning
Deep Learning , This book offers a comprehensive introduction to the central ideas that underpin deep learning. It is intended both for newcomers to machine learning and for those already experienced in the field. Covering key concepts relating to contemporary architectures and techniques, this essential book equips readers with a robust foundation for potential future specialization. The field of deep learning is undergoing rapid evolution, and therefore this book focusses on ideas that are likely to endure the test of time. The book is organized into numerous bite-sized chapters, each exploring a distinct topic, and the narrative follows a linear progression, with each chapter building upon content from its predecessors. This structure is well-suited to teaching a two-semester undergraduate or postgraduate machine learning course, while remaining equally relevant to those engaged in active research or in self-study. A full understanding of machine learning requires some mathematical background and so the book includes a self-contained introduction to probability theory. However, the focus of the book is on conveying a clear understanding of ideas, with emphasis on the real-world practical value of techniques rather than on abstract theory. Complex concepts are therefore presented from multiple complementary perspectives including textual descriptions, diagrams, mathematical formulae, and pseudo-code. Chris Bishop is a Technical Fellow at Microsoft and is the Director of Microsoft Research AI4Science. He is a Fellow of Darwin College Cambridge, a Fellow of the Royal Academy of Engineering, and a Fellow of the Royal Society. Hugh Bishop is an Applied Scientist at Wayve, a deep learning autonomous driving company in London, where he designs and trains deep neural networks. He completed his MPhil in Machine Learning and Machine Intelligence at Cambridge University. ¿Chris Bishop wrote a terrific textbook on neural networks in 1995 and has a deep knowledge of the field and its core ideas. His many years of experience in explaining neural networks have made him extremely skillful at presenting complicated ideas in the simplest possible way and it is a delight to see these skills applied to the revolutionary new developments in the field.¿ -- Geoffrey Hinton "With the recent explosion of deep learning and AI as a research topic, and the quickly growing importance of AI applications, a modern textbook on the topic was badly needed. The "New Bishop" masterfully fills the gap, covering algorithms for supervised and unsupervised learning, modern deep learning architecture families, as well as how to apply all of this to various application areas." ¿ Yann LeCun ¿This excellent and very educational book will bring the reader up to date with the main concepts and advances in deep learning with a solid anchoring in probability. These concepts are powering current industrial AI systems and are likely to form the basis of further advances towards artificial general intelligence.¿ -- Yoshua Bengio , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 75.37 € | Versand*: 0 € -
Kneusel, Ronald T.: Practical Deep Learning
Practical Deep Learning , This book is for people with no experience with machine learning and who are looking for an intuition-based, hands-on introduction to deep learning using Python. Deep Learning for Complete Beginners: A Python-Based Introduction is for complete beginners in machine learning. It introduces fundamental concepts such as classes and labels, building a dataset, and what a model is and does before presenting classic machine learning models, neural networks, and modern convolutional neural networks. Experiments in Python--working with leading open-source toolkits and standard datasets--give you hands-on experience with each model and help you build intuition about how to transfer the examples in the book to your own projects. You'll start with an introduction to the Python language and the NumPy extension that is ubiquitous in machine learning. Prominent toolkits, like sklearn and Keras/TensorFlow are used as the backbone to enable you to focus on the elements of machine learning without the burden of writing implementations from scratch. An entire chapter on evaluating the performance of models gives you the knowledge necessary to understand claims on performance and to know which models are working well and which are not. The book culminates by presenting convolutional neural networks as an introduction to modern deep learning. Understanding how these networks work and how they are affected by parameter choices leaves you with the core knowledge necessary to dive into the larger, ever-changing world of deep learning. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20210223, Produktform: Kartoniert, Themenüberschrift: COMPUTERS / Neural Networks, Keyword: programming gifts;gifts for geeks;geek gifts;gifts for nerds;tech gifts;machine learning books;NumPy;open source;Tensorflow;Keras;neural networks;machine learning for beginners;machine learning;deep learning;computers;technology;computer;code;coding;algorithm;computer programming;python;python programming;algorithms;python for data analysis;python machine learning;tech;computer books;programmer gifts;computer programmer gifts;programming;reference;statistics;engineering;guide;computer science, Fachschema: Englische Bücher / Naturwissenschaften~Fuzzy Logik - Fuzzy Set~Neuronales Netz - Neuronaler Computer - Neurocomputer~Programmiersprachen~Intelligenz / Künstliche Intelligenz~KI~Künstliche Intelligenz - AI, Fachkategorie: Programmier- und Skriptsprachen, allgemein~Maschinelles Lernen, Imprint-Titels: No Starch Press, Warengruppe: HC/Informatik, Fachkategorie: Neuronale Netze und Fuzzysysteme, Text Sprache: eng, Seitenanzahl: XXX, Seitenanzahl: 426, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Random House LLC US, Verlag: Random House LLC US, Länge: 234, Breite: 182, Höhe: 32, Gewicht: 882, Produktform: Kartoniert, Genre: Importe, Genre: Importe, Herkunftsland: VEREINIGTE STAATEN VON AMERIKA (US), Katalog: LIB_ENBOOK, Katalog: Gesamtkatalog, Katalog: Internationale Lagertitel, Katalog: internationale Titel, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0008, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 2412602
Preis: 45.24 € | Versand*: 0 € -
Data
Lightning USB Datenkabel für Apple iPhone / iPad mit Lightning Anschluss, 0,5m
Preis: 14.99 € | Versand*: 6.95 € -
Data
Micro USB Verbindung, 0.5 m
Preis: 7.99 € | Versand*: 7.99 €
-
Wie können Big Data Analytics-Technologien im Projektmanagement eingesetzt werden?
Big Data Analytics-Technologien können im Projektmanagement eingesetzt werden, um große Mengen an Daten aus verschiedenen Quellen zu sammeln und zu analysieren. Dies ermöglicht es Projektmanagern, Trends und Muster zu erkennen, Risiken frühzeitig zu identifizieren und fundierte Entscheidungen zu treffen. Darüber hinaus können Big Data Analytics-Technologien auch zur Vorhersage von Projektverzögerungen oder zur Optimierung von Ressourcen eingesetzt werden.
-
Was ist Big Data?
Big Data bezieht sich auf große Mengen an Daten, die mit hoher Geschwindigkeit und Vielfalt generiert werden. Diese Daten können aus verschiedenen Quellen stammen, wie zum Beispiel sozialen Medien, Sensoren oder Transaktionen. Big Data ermöglicht es Unternehmen, Muster und Trends zu identifizieren, um fundierte Entscheidungen zu treffen und ihre Geschäftsprozesse zu optimieren.
-
Wie entsteht Big Data?
Big Data entsteht durch die Sammlung und Speicherung einer großen Menge von Daten aus verschiedenen Quellen wie Sensoren, Social Media, Transaktionen und mehr. Diese Daten werden dann mithilfe von speziellen Tools und Technologien analysiert und verarbeitet, um Muster, Trends und Erkenntnisse zu identifizieren. Durch die kontinuierliche Erfassung und Analyse von Daten in Echtzeit können Unternehmen fundierte Entscheidungen treffen und ihre Geschäftsprozesse optimieren. Letztendlich ermöglicht Big Data eine tiefere Einblicke in das Verhalten von Kunden, Trends auf dem Markt und ermöglicht die Entwicklung innovativer Produkte und Dienstleistungen.
-
Wie funktioniert Big Data?
Wie funktioniert Big Data?
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.