Produkt zum Begriff Algorithmen:
-
Bhargava, Aditya Y: Algorithmen kapieren
Algorithmen kapieren , Visuelle Erläuterungen mit über 400 anschaulichen Illustrationen Mit einfachen Beispielen aus dem Alltag und zahlreichen Übungen Ausführlich kommentierter Beispielcode in Python Algorithmen kapieren ohne graue Theorie Ab sofort sind Algorithmen nicht mehr langweilig und trocken! Mit diesem Buch wird es dir leichtfallen, ihre Funktionsweise zu verstehen. Alle Algorithmen werden mithilfe von Beispielen aus dem täglichen Leben erläutert, z.B. der Unterschied zwischen Arrays und verketteten Listen anhand der Aufgabe, freie Plätze in einem Kinosaal zu finden. Für den Einsatz in der Praxis Du lernst die wichtigsten Algorithmen kennen, die dir dabei helfen, deine Programme zu beschleunigen, deinen Code zu vereinfachen und die gängigsten Aufgaben bei der Programmierung zu lösen. Dabei beginnst du mit einfachen Aufgaben wie Sortieren und Suchen. Mit diesen Grundlagen gerüstet kannst du auch schwierigere Aufgaben wie Datenkomprimierung oder künstliche Intelligenz in Angriff nehmen. Visuell und praxisnah Zu allen Erläuterungen findest du anschauliche Illustrationen und Diagramme sowie ausführlich kommentierten Beispielcode in Python. Übungsaufgaben mit Lösungen für jedes Kapitel helfen dir, dein Wissen zu testen und zu festigen. Aus dem Inhalt: Such-, Sortier- und Graphenalgorithmen Performance von Algorithmen analysieren (Landau-Notation) Arrays, verkettete Listen und Hashtabellen Bäume und balancierte Bäume Rekursion und Stacks Quicksort und das Teile-und-herrsche-Verfahren Dijkstra-Algorithmus für die Ermittlung des kürzesten Pfads Approximationsalgorithmen und NP-vollständige Probleme Greedy-Algorithmen Dynamische Programmierung Klassifikation und Regression mit dem k-Nächste-Nachbarn-Algorithmus Stimmen zum Buch »Das Buch schafft das Unmögliche: Mathe macht Spaß und ist einfach.« (- Sander Rossel, COAS Software Systems) »Algorithmen sind nicht langweilig! Die Lektüre des Buchs hat mir und meinen Studenten Spaß gemacht und war lehrreich.« (- Christopher Haupt, Mobirobo, Inc.) »Heutzutage gibt es praktisch keinen Aspekt des Lebens, der nicht durch einen Algorithmus optimiert wird. Dieses Buch sollte Ihre erste Wahl sein, wenn Sie eine gut erklärte Einführung in dieses Thema suchen.« (- Amit Lamba, Tech Overture, LLC) , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 29.99 € | Versand*: 0 € -
Steinkamp, Veit: Mathematische Algorithmen mit Python
Mathematische Algorithmen mit Python , Tauchen Sie ein in die Welt der Algorithmen und erforschen Sie die Verbindung zwischen Programmierung und Mathematik. Dr. Veit Steinkamp löst mit Ihnen Aufgaben aus verschiedenen Bereichen und zeigt, wie Rechnungen in Code umgesetzt werden. Sie lernen die grundlegenden Programm- und Datenstrukturen Pythons kennen und erfahren, welche Module Ihnen viel Arbeit abnehmen. Rasch programmieren Sie Algorithmen zum Lösen von Gleichungssystemen nach, automatisieren Kurvendiskussionen und berechnen Integrale. Abstrakte Zusammenhänge werden so deutlich, und ganz nebenbei verbessern Sie Ihre Python-Fähigkeiten und programmieren geschickter und gekonnter. Aus dem Inhalt: Python installieren und anwenden Daten- und Programmstrukturen Module: NumPy, SymPy, SciPy, Matplotlib Zahlen Gleichungssysteme Folgen und Reihen Funktionen Differenzial- und Integralrechnung Differenzialgleichungen Ausgleichsrechnungen Statistik Fraktale Geometrie Die Fachpresse zur Vorauflage: iX - Magazin für professionelle Informationstechnik: »Der Titel verspricht nicht zu viel. Man lernt nicht nur Mathematik, sondern spielend auch die Umsetzung von mathematischen Konzepten in ein Programm und damit die praktische Anwendung von Python.« c't: »Überhaupt beweist der Autor ein gutes didaktisches Händchen. Mit Hintergrundinformationen lockert er seinen Text auf; hinzu kommen zahlreiche Abbildungen mit Funktionsplots sowie gut gewählte Übungen.« , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 34.90 € | Versand*: 0 € -
Chabert, Antoine: SAP Analytics Cloud: Predictive Analytics
SAP Analytics Cloud: Predictive Analytics , Today's organizations must be prepared for tomorrow's events. Forecast future behavior in SAP Analytics Cloud with this comprehensive guide to predictive analytics! Start by learning about the data types, scenarios, and methods used in predictive analytics projects. Then follow step-by-step instructions to build, analyze, and apply predictive models to your business data using classification, time series forecasting, and regression analysis. Automate your models and dive into the data science with this all-in-one guide! In this book, you'll learn about: a. Predictive Scenarios and Projects Understand the basics of predictive analytics in SAP Analytics Cloud: scenarios, data types, and actions. Then plan your predictive project, including identifying the key stakeholders and reviewing the methodology. b. Build, Train, Analyze, and Apply Master predictive models from end to end. Create classification, time series, and regression models; then train them to identify business patterns. Analyze and apply the results of your models to data in SAP Analytics Cloud. c. Practical Demonstrations See predictive analytics in action! Identify use cases for predictive modeling. For each data model, understand practical applications through curated examples with sample business data. Highlights include: 1) Predictive scenarios 2) Predictive forecasts 3) Data modeling 4) Planning 5) Time series model 6) Classification model 7) Regression model 8) Multi-actions 9) Data science 10) Stories and dashboards , Schule & Ausbildung > Fachbücher, Lernen & Nachschlagen
Preis: 81.99 € | Versand*: 0 € -
Algorithmen und Datenstrukturen (Saake, Gunter~Sattler, Kai-Uwe)
Algorithmen und Datenstrukturen , Algorithmen und Datenstrukturen von Grund auf verstehen Fundierte Einführung mit klarem didaktischen Aufbau Mit konkreten Anwendungsbeispielen Eine reichhaltige Fundgrube für Lehre und Selbststudium Kenntnisse von Algorithmen und Datenstrukturen sind ein Grundbaustein des Studiums der Informatik und verwandter Fachrichtungen. Das Buch behandelt diese Thematik in Verbindung mit der Programmiersprache Java und schlägt so eine Brücke zwischen den klassischen Lehrbüchern zur Theorie von Algorithmen und Datenstrukturen und den praktischen Einführungen in eine konkrete Programmiersprache. Die konkreten Algorithmen und deren Realisierung in Java werden umfassend dargestellt. Daneben werden die theoretischen Grundlagen vermittelt, die in Programmiersprachen-Kursen oft zu kurz kommen: abstrakte Maschinenmodelle, Berechenbarkeit, Algorithmenparadigmen sowie parallele und verteilte Abläufe. Einen weiteren Schwerpunkt bilden Datenstrukturen wie Listen, Bäume, Graphen und Hashtabellen sowie deren objektorientierte Implementierung mit modernen Methoden der Softwareentwicklung. Die 6. Auflage führt neue Datenstrukturen und Algorithmen (z.B. Skip-Listen, weitere Hashverfahren und Graphalgorithmen) ein und berücksichtigt relevante Neuerungen der aktuellen Java-Versionen. Das Buch richtet sich an Studierende im Grundstudium an Universitäten und Fachhochschulen sowie an alle, die die Grundlagen der praktischen Informatik strukturiert erlernen wollen. Sie erwerben damit die Basis für die theoretischen und praktischen Vertiefungen im Hauptstudium und lernen gleichzeitig die Umsetzung in den »Alltag« der Softwareentwicklung kennen. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 6., überarbeitete und erweiterte Auflage, Erscheinungsjahr: 202011, Produktform: Leinen, Autoren: Saake, Gunter~Sattler, Kai-Uwe, Auflage: 21006, Auflage/Ausgabe: 6., überarbeitete und erweiterte Auflage, Themenüberschrift: COMPUTERS / Programming / Algorithms, Fachschema: Algorithmus~EDV / Theorie / Programmieren / Datenstrukturen~Informatik~Java (EDV)~Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein~Informatik, Bildungszweck: für die Hochschule, Warengruppe: HC/Informatik, Fachkategorie: Algorithmen und Datenstrukturen, Thema: Verstehen, Text Sprache: ger, Seitenanzahl: XIX, Seitenanzahl: 588, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: "dpunkt.verlag GmbH", Länge: 246, Breite: 175, Höhe: 40, Gewicht: 1217, Produktform: Gebunden, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger EAN: 9783864901362 9783898646635 9783898643856 9783898642552 9783898641227, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0002, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 498657
Preis: 44.90 € | Versand*: 0 €
-
Wie funktioniert Big Data Analytics?
Wie funktioniert Big Data Analytics? Big Data Analytics beinhaltet die Verarbeitung und Analyse großer Mengen von Daten, um Muster, Trends und Erkenntnisse zu identifizieren. Zunächst werden die Daten gesammelt und gespeichert, dann werden sie mithilfe von speziellen Tools und Algorithmen analysiert. Durch den Einsatz von Data Mining, maschinellem Lernen und künstlicher Intelligenz können Unternehmen wertvolle Einblicke gewinnen und fundierte Entscheidungen treffen. Die Ergebnisse der Analyse können für verschiedene Anwendungen genutzt werden, wie z.B. zur Verbesserung von Produkten und Dienstleistungen, zur Optimierung von Geschäftsprozessen oder zur Vorhersage von zukünftigen Entwicklungen.
-
Welche Förderungsmaßnahme gibt es für Data Analysts bzw. Data Scientists?
Es gibt verschiedene Förderungsmaßnahmen für Data Analysts und Data Scientists, je nach Land und Organisation. Zum Beispiel bieten Universitäten und Forschungseinrichtungen Stipendien und Forschungsprojekte an. Unternehmen können auch Weiterbildungsprogramme und Schulungen für ihre Mitarbeiter anbieten. Darüber hinaus gibt es auch staatliche Förderprogramme und Stipendien für Studierende und Forscher in diesem Bereich.
-
Wie können Big Data Analytics-Technologien im Projektmanagement eingesetzt werden?
Big Data Analytics-Technologien können im Projektmanagement eingesetzt werden, um große Mengen an Daten aus verschiedenen Quellen zu sammeln und zu analysieren. Dies ermöglicht es Projektmanagern, Trends und Muster zu erkennen, Risiken frühzeitig zu identifizieren und fundierte Entscheidungen zu treffen. Darüber hinaus können Big Data Analytics-Technologien auch zur Vorhersage von Projektverzögerungen oder zur Optimierung von Ressourcen eingesetzt werden.
-
Wie können Machine-Learning-Algorithmen zur Vorhersage zukünftiger Ereignisse eingesetzt werden?
Machine-Learning-Algorithmen analysieren historische Daten, um Muster und Trends zu identifizieren. Anhand dieser Muster können sie zukünftige Ereignisse vorhersagen. Die Algorithmen werden trainiert, um präzise Prognosen zu erstellen und Entscheidungen zu unterstützen.
Ähnliche Suchbegriffe für Algorithmen:
-
Jankowski, Timo: Fußball - Von Big Data zu Smart Data
Fußball - Von Big Data zu Smart Data , Das Thema Big Data ist unaufhaltsam in die Fußballwelt eingezogen und wird mit Sicherheit auch nicht mehr verschwinden. Es wird weiterhin an Bedeutung gewinnen, da die Datenqualität und die praktische Umsetzung dieser Daten bereits zahlreiche beeindruckende Erfolge vorweisen können. Zu Beginn des Buchs wird auf die Problematik des Schwarz-Weiß-Denkens, das im Fußball weit verbreitet ist, eingegangen. Im zweiten Teil rückt dann das Thema Big Data im Fußball in den Vordergrund. Dies geschieht vor allem immer im Hinblick auf die Umwandlung in Smart Data mit vielen praktischen Beispielen, sodass jeder Trainer und Interessierte zahlreiche Anregungen für die eigene Arbeit in der Planung, auf dem Platz und in der Evaluierung bekommt. Zahlreiche Key-Performance-Indikatoren (KPIs) werden unter die Lupe genommen und es wird aufgezeigt, wie Datenanalyse auf dem Weg zum Erfolg helfen kann. Ziel dieses Werks ist es, das Thema Big Data im Fußball zu entmystifizieren, weshalb im letzten Abschnitt die erfolgreiche Qualifikation der Juniorennationalmannschaft von Fidschi für die U20-Weltmeisterschaft 2023 beschrieben wird. Dieses Beispiel zeigt, wie die richtige Mischung aus objektiven Daten und den menschlichen Komponenten in der Praxis zum Erfolg führen kann. Dieses Buch plädiert dafür, die tief verwurzelten Werte und die Ursprünglichkeit des Fußballs unbedingt beizubehalten und zeigt auf, wie sich beide Seiten - Bauchgefühl und Datenanalyse - gewinnbringend miteinander verbinden lassen. Fußball - von Big Data zu Smart Data ist DAS Standardwerk für alle Trainer, die das Thema Big Data angehen wollen und Tipps für die Umsetzung auf dem Platz benötigen. , Bücher > Bücher & Zeitschriften
Preis: 28.00 € | Versand*: 0 € -
Data
Micro USB Verbindung, 0.5 m
Preis: 7.99 € | Versand*: 7.99 € -
Data
Micro USB Verbindung, 0.5 m
Preis: 11.46 € | Versand*: 6.96 € -
Data
Micro USB Verbindung, 0.5 m
Preis: 7.99 € | Versand*: 7.99 €
-
Was ist Big Data?
Big Data bezieht sich auf große Mengen an Daten, die mit hoher Geschwindigkeit und Vielfalt generiert werden. Diese Daten können aus verschiedenen Quellen stammen, wie zum Beispiel sozialen Medien, Sensoren oder Transaktionen. Big Data ermöglicht es Unternehmen, Muster und Trends zu identifizieren, um fundierte Entscheidungen zu treffen und ihre Geschäftsprozesse zu optimieren.
-
Wie entsteht Big Data?
Big Data entsteht durch die Sammlung und Speicherung einer großen Menge von Daten aus verschiedenen Quellen wie Sensoren, Social Media, Transaktionen und mehr. Diese Daten werden dann mithilfe von speziellen Tools und Technologien analysiert und verarbeitet, um Muster, Trends und Erkenntnisse zu identifizieren. Durch die kontinuierliche Erfassung und Analyse von Daten in Echtzeit können Unternehmen fundierte Entscheidungen treffen und ihre Geschäftsprozesse optimieren. Letztendlich ermöglicht Big Data eine tiefere Einblicke in das Verhalten von Kunden, Trends auf dem Markt und ermöglicht die Entwicklung innovativer Produkte und Dienstleistungen.
-
Wie funktioniert Big Data?
Wie funktioniert Big Data?
-
Verdient man Geld beim Praktikum in den Bereichen Data Science oder Machine Learning?
Es hängt von verschiedenen Faktoren ab, ob man Geld während eines Praktikums in den Bereichen Data Science oder Machine Learning verdient. In einigen Fällen bieten Unternehmen Praktikumsstellen mit einer Vergütung an, insbesondere wenn es sich um größere Unternehmen handelt. In anderen Fällen kann es sein, dass Praktika unbezahlt sind oder nur eine geringe Aufwandsentschädigung bieten. Es ist wichtig, die individuellen Bedingungen des Praktikums zu prüfen, um herauszufinden, ob eine Vergütung angeboten wird.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.